Recruitment of spinal motor pools during voluntary movements versus stepping after human spinal cord injury.
نویسندگان
چکیده
We investigated the activation of lower limb motor pools by supraspinal and spinal networks after human spinal cord injury (SCI). We compared electromyographic (EMG) activity from six muscles during voluntarily attempted non-weight-bearing single-joint movements, multijoint movements approximating stepping in a supine position, and weight-bearing stepping on a treadmill with body weight support (BWST) in seven clinically incomplete and three clinically complete SCI subjects. Seven SCI subjects had previously completed Laufband therapy (a specific step training using variable levels of body weight support and manual assistance). Significant coactivation of agonists and antagonists and multijoint flexion or extension movements of the entire limb occurred during attempts at isolated knee or ankle single-joint movements in clinically incomplete SCI subjects. Further, some muscles that were not recruited during voluntary attempts at single-joint movements were activated during voluntary step-like multijoint movements (5/16 comparisons). This suggests that the residual voluntary motor control in incomplete SCI subjects evokes more generalized motor patterns (limb flexion or extension) rather than selective activation of individual muscles. Clinically incomplete and clinically complete SCI subjects could achieve greater activation of motor pools and more reciprocal patterns of activity between agonists and antagonists during weight bearing stepping than during non-weight-bearing voluntary movements. The EMG mean amplitudes were higher during stepping than during voluntary movements in 50/60 muscles studied (p < 0.05). These results suggest that stepping with knee and hip extension and flexion and alternating lower limb loading and unloading provides proprioceptive inputs to the spinal cord that increases motor recruitment and improves reciprocity between agonists and antagonists compared to voluntary efforts.
منابع مشابه
Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study.
BACKGROUND Repeated periods of stimulation of the spinal cord and training increased the ability to control movement in animal models of spinal cord injury. We hypothesised that tonic epidural spinal cord stimulation can modulate spinal circuitry in human beings into a physiological state that enables sensory input from standing and stepping movements to serve as a source of neural control to u...
متن کاملMotor unit firing during and after voluntary contractions of human thenar muscles weakened by spinal cord injury.
Spinal cord injury may change both the distribution and the strength of the synaptic input within a motoneuron pool and therefore alter force gradation. Here, we have studied the relative contributions of motor unit recruitment and rate modulation to force gradation during voluntary contractions of thenar muscles performed by five individuals with chronic (>1 yr) cervical spinal cord injury. Me...
متن کاملAugmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals.
The level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after motor-incomplete spinal cord injury. Here, we present initial data using noninvasive transcutaneous lumbar spinal cord stimulation (tSCS) to modulate this central state of excitability during voluntary treadmill stepping in three motor-i...
متن کاملNeuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals.
Epidural stimulation (ES) of the lumbosacral spinal cord has been used to facilitate standing and voluntary movement after clinically motor-complete spinal-cord injury. It seems of importance to examine how the epidurally evoked potentials are modulated in the spinal circuitry and projected to various motor pools. We hypothesized that chronically implanted electrode arrays over the lumbosacral ...
متن کاملIntegration of sensory, spinal, and volitional descending inputs in regulation of human locomotion.
We reported previously that both transcutaneous electrical spinal cord stimulation and direct pressure stimulation of the plantar surfaces of the feet can elicit rhythmic involuntary step-like movements in noninjured subjects with their legs in a gravity-neutral apparatus. The present experiments investigated the convergence of spinal and plantar pressure stimulation and voluntary effort in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurotrauma
دوره 19 10 شماره
صفحات -
تاریخ انتشار 2002